Three-dimensional Dynamical Systems with Four-dimensional Vessiot-guldberg-lie Algebras
نویسندگان
چکیده
Dynamical systems attract much attention due to their wide applications. Many significant results have been obtained in this field from various points of view. The present paper is devoted to an algebraic method of integration of three-dimensional nonlinear time dependent dynamical systems admitting nonlinear superposition with four-dimensional Vessiot-Guldberg-Lie algebras L4. The invariance of the relation between a dynamical system admit-ting nonlinear superposition and its Vessiot-Guldberg-Lie algebra is the core of the integration method. It allows to simplify the dynamical systems in question by reducing them to standard forms. We reduce the three-dimensional dynamical systems with four-dimensional Vessiot-Guldberg-Lie algebras to 98 standard types and show that 86 of them are integrable by quadratures.
منابع مشابه
Low Dimensional Vessiot-Guldberg-Lie Algebras of Second-Order Ordinary Differential Equations
A direct approach to non-linear second-order ordinary differential equations admitting a superposition principle is developed by means of Vessiot-Guldberg-Lie algebras of a dimension not exceeding three. This procedure allows us to describe generic types of second-order ordinary differential equations subjected to some constraints and admitting a given Lie algebra as Vessiot-Guldberg-Lie algebr...
متن کاملOn permutably complemented subalgebras of finite dimensional Lie algebras
Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...
متن کاملOn Picard–Vessiot extensions with group PGL3
Let F be a differential field of characteristic zero with algebraically closed field of constants. We provide an explicit description of the twisted Lie algebras of PGL3-equivariant derivations on the coordinate rings of F -irreducible PGL3-torsors in terms of nine-dimensional central simple algebras over F . We use this to construct a Picard–Vessiot extension which is the function field of a n...
متن کاملRealizations of Indecomposable Solvable 4-Dimensional Real Lie Algebras
Inequivalent twoand three-dimensional Lie algebras were classified in XIX century by Lie [1]. In 1963 Mubaraksyanov classified threeand four-dimensional real Lie algebras [2] (see also those results in Patera and Winternitz [3]). In 1989 Mahomed and Leach obtained realizations of threedimensional Lie algebras in terms of vector fields defined on the plane [4]. Mahomed and Soh tried to obtain re...
متن کاملThe structure of a pair of nilpotent Lie algebras
Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017